
RetroVisor: Nested Virtualization for Multi IaaS VM
Availability

Aurélien Wailly
Orange Labs

aurelien.wailly@orange.com

Marc Lacoste
Orange Labs

marc.lacoste@orange.com

Hervé Debar
Télécom SudParis

herve.debar@telecom-sudparis.eu

Nested virtualization [1] provides an extra layer of virtualization to
enhance security with fairly reasonable performance impact. User-
centric vision of cloud computing gives a high-level of control on
the whole infrastructure [2], such as untrusted dom0 [3, 4].

This paper introduces RetroVisor, a security architecture to seam-
lessly run a virtual machine (VM) on multiple hypervisors simulta-
neously. We argue that this approach delivers high-availability and
provides strong guarantees on multi IaaS infrastructures. The user
can perform detection and remediation against potential hypervi-
sors weaknesses, unexpected behaviors and exploits.

1. ARCHITECTURE
The physical host is running a minimal hypervisor (L0) with nested
virtualization enabled. L0 hypervisor controls, monitors and runs
multiple guest hypervisors (L1) in isolated environments. Each L1
hypervisor deals with its own VM image and VM execution. The
original VM is cloned and distributed to all L1 hypervisors at the
exact same state. Further VM state evolution is filtered upstream,
when the user wants to modify VM (through VNC here). It is then
propagated by a dispatcher to each L1 hypervisor separately (1).
The dispatcher is part of an autonomous manager. The latter de-
tects input incoherences (2) and react appropriately using the L0
hypervisor to kill or restart L1 hypervisor and VM (3).

Figure 1: A Simple Use Case.

2. IMPLEMENTATION
We compare three solutions to deploy the dispatcher component:
end-user client modification, network replication of packets and
hypervisor modification to clone commands. We evaluate four im-
portant aspects for each of them: ease of implementation, which
reflects the investment needed by programmers to integrate the so-
lution; error tolerance of the architecture security against buggy
code; genericity to estimate reusability of the current code on sim-
ilar endpoint; and security of the solution in terms of the skill level
required to perform an attack.
End user. The user is in charge of handling the multiple connec-
tions to hypervisor VNC interfaces. He sends mouse moves and
keystrokes to each one in parallel. These concept increase the size
of the client display program, according to client language. Some
VNC clients are available in python, easy and fast to modify in or-
der to match our needs. The major downside is that the end-user
manages the solution entirely and thus controls global security.

Router. All packets received on the master VNC port are repli-
cated to another port. The well-known netfilter interface provides
TEE operation, which duplicates a packet and sends it to another
machine. Thus we set up a VM that handles the replicated packet,
modifies the destination port and forwards it back to the original
machine. However it is hard to implement and poorly reusable.
VNC relies on a connection-oriented protocol (TCP). First machine
is connected to the client, while others drop replicated packets as
there is a non-existing TCP connection. Indeed, we can deliver
UDP packets but we still need to modify VNC to use this trans-
port protocol. Either porting RFB [5] or using UDP tunnel requires
modification of other components. The end-user cannot manage
router, thus enhancing solution security.
Hypervisor. Only one port is listening for all VM images and can
be seen as a VNC proxy, and therefore modifying the hypervisor
VNC handler. This approach is error prone as each bug severely
threatens the infrastructure security. Furthermore, it adds an extra
layer of processing, where the hypervisor is usually under heavy
load with a large number of VM. End-user is unable to use more
than the usual VNC interface, increasing security.

Method Evaluation?
Easiness Fault tolerence Genericity Security

Client high high high low
Router high medium medium high
Hypervisor low low low high

Table 1: Solutions evaluation (higher is better)

The client-oriented solution is the less invasive and less complex of
all three to set up. We modified a python VNC client for detection
and reaction. Client shared screen buffer is updated by all servers,
and provides a visual way to distinguish different execution of the
same inputs. Client compares Incoming buffers to automatically
detect display incoherences. Management is available through L0
hypervisor APIs, libvirt in our example, to kill and restart L1 hy-
pervisors.

3. NEXT STEPS
We presented RetroVisor, an architecture design to enhance and
guarantee VM execution. RetroVisor uses nested virtualization to
detect hypervisor failures and recover to a safe state. We are cur-
rently supporting hypervisors appearing on Figure 1. Advanced
threat detection and remediation are under development through
the VESPA framework [6].

4. REFERENCES
[1] BEN-YEHUDA, M. et al. The Turtles project: Design and implementation of

nested virtualization. In: Proceedings of the 9th USENIX conference on Operat-
ing systems design and implementation. USENIX Association. 2010, 1–6.

[2] WILLIAMS, D., JAMJOOM, H., and WEATHERSPOON, H. The Xen-Blanket: vir-
tualize once, run everywhere (2012).

[3] ZHANG, F., CHEN, J., CHEN, H., and ZANG, B. CloudVisor: Retrofitting pro-
tection of virtual machines in multi-tenant cloud with nested virtualization. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-
ciples. ACM. 2011, 203–216.

[4] BUTT, S., LAGAR-CAVILLA, H., SRIVASTAVA, A., and GANAPATHY, V. Self-
service Cloud Computing. In: ACM CCS. 2012.

[5] RICHARDSON, T. and LEVINE, J. The Remote Framebuffer Protocol. RFC 6143.
Internet Engineering Task Force, Mar. 2011.

[6] WAILLY, A., LACOSTE, M., and DEBAR, H. VESPA: multi-layered self-protection
for cloud resources. In: Proceedings of the 9th international conference on Au-
tonomic computing. ACM. 2012, 155–160.


