
KungFuVisor: Enabling Hypervisor Self-Defense

Aurélien Wailly Marc Lacoste
Orange Labs

firstname.lastname@orange.com

Hervé Debar
Télécom SudParis

herve.debar@telecom-sudparis.eu

ABSTRACT
Recently, some of the most potent attacks against cloud compu-
ting infrastructures target their very foundation: the hypervisor or
Virtual Machine Monitor (VMM). In each case, the main attack
vector is a poorly confined device driver in the virtualization layer,
enabling to bypass resource isolation and take complete infrastruc-
ture control. Current architectures offer no protection against such
attacks. At best, they attempt to contain but do not eradicate the
detected threat, usually with static, hard-to-manage defense strate-
gies. This paper proposes an altogether different approach by pre-
senting KungFuVisor, a framework to build self-defending hypervi-
sors. The framework regulates hypervisor protection through seve-
ral coordinated autonomic security loops which supervise different
VMM layers through well-defined hooks. Thus, interactions bet-
ween a device driver and its VMM environment may be strictly
monitored and controlled automatically. The result is a very flexi-
ble self-protection architecture, enabling to enforce dynamically
a rich spectrum of remediation actions over different parts of the
VMM, also facilitating defense strategy administration.

1. PROTECTING THE HYPERVISOR
The Problem. Despite many expected benefits, the Achilles heel of
cloud computing remains security. The virtualization layer, foun-
dation of a cloud infrastructure, is particularly vulnerable to po-
tent attacks based on shared resources. Subverting a hosted virtual
machine (VM) or the hypervisor may lead to breaking VM isola-
tion, giving the attacker complete system control. So far, most of
the attention has focused on protecting VMs. Unfortunately, the
corresponding solutions become ineffective in case of hypervisor
compromise, as they assume a trusted VMM. The true challenge
lies therefore in protecting the hypervisor layer.
Several recent attacks [4,6] show that the main threat to hypervisor
isolation breakout comes from buggy or malicious device drivers
inside the hypervisor: kernel exploitation is enabled by poor driver
confinement.
Limitations of Existing Solutions. A variety of techniques were
proposed to attempt to solve the problem. For instance, driver
virtualization achieves strong isolation, but does not address pro-
tection of the virtualizing layer underneath [8].
Trusted computing architectures provide strong guarantees regar-
ding hypervisor code integrity [1]. Unfortunately, they usually only
detect integrity violations, and do not include remediation opera-
tions. Integrity checking is also generally static – dynamic monito-
ring throughout the system life-time being much harder to achieve.
Driver sandboxing has also been heavily explored: a reference moni-
tor mediates access between driver and device, kernel, or user-
land [5]. However, solutions remain limited to simple confinement,
proposing no actions to sanitize the kernel. Security policies are
also often hardcoded in the interception mechanisms themselves.
Dynamic, reactive protection strategies are thus difficult to set up,
as policies must be configured and updated manually.

New designs towards componentized hypervisor security architec-
tures also aim to strengthen driver isolation, and contribute to re-
duce the attack surface further. However, they often require ex-
tensive code rewriting, making them hard to apply to most legacy
hypervisors [3, 7].
Overall, current hypervisor architectures offer no – or at best rudi-
mentary – protection for the VMM layer. Previous attempts suffer
from: (1) static, hard-to-manage security policies, not well sepa-
rated from enforcement mechanisms; and (2) no remediation against
threats.

2. KUNGFUVISOR OVERVIEW
To overcome the previous limitations, we introduce KungFuVisor,
an autonomic security management framework for building self-
defending hypervisors. This framework allows to set up several
control loops to regulate hypervisor protection, with detection, de-
cision, and reaction steps.
Threat Model. The attacker may have arbitrary control over VMs.
We assume tamper-resistant hardware and related firmwares (CPU,
BIOS), and boot-time hypervisor integrity. However, VMM device
drivers may be flawed, and thus tampered with to exploit a VMM
vulnerability. A typical bounce attack scenario sourced from a
VM might be: (1) perform VM isolation breakout through a buggy
VMM driver; (2) alter and subvert the driver; (3) from there, com-
promise other parts of the VMM or co-located VMs. Such exploita-
tion may for instance result into rootkit injection with inter-VM
traffic sniffing over the hypervisor vSwitch.

Figure 1: A 3-Layer Hypervisor Model.

Design. The framework operates through clearly-identified inter-
ception points (hooks) in the different hypervisor layers. KungFu-
Visor hooks enable to mediate interactions between device drivers,
devices, VMs, and other hypervisor data structures. Thus, dynamic
monitoring (detection) and access control enforcement (reaction)
over communications between the driver and its environment may
be achieved. It also enable easy integration into most hypervisors,
provided that defined hooks are available. Note that containment
is not limited to memory-based isolation (e.g., using processor-
related mechanisms such as the IOMMU [7]). Enforced reaction
policies may apply to other communication channels between the
driver and its environment to cover a large spectrum of known ex-
ploitation techniques [2].



A security management plane provides a unified view of the de-
cision logic. This plane contains orchestration facilities to realize
elaborate detection and reaction patterns – both in each layer, and
across layers, and between computing and networking views of
VMM resources [9].
This design brings two main benefits: (1) self-managed hypervi-
sor security automates policy administration, allowing dynamic en-
forcement of flexible driver isolation policies; and (2) coordination
of multiple autonomic security loops enables to trigger a rich set of
remediation actions over different parts of the hypervisor.

2.1 Hypervisor Model
A 3-Layered Model. We consider the generic 3-layered model
shown in Figure 1 for the hypervisor architecture.
Layer 1 (L1) contains the state of hardware computing and net-
working resources: CPU, physical memory, and devices (storage,
network card). Layer 2 (L2) contains the hypervisor-level view
of L1 resources, known in KungFuVisor as hRSCs (hypervisor Re-
SourCes): virtual CPU, host OS virtual memory, and device drivers.
hRSCs are the weak point of hypervisor security, and should there-
fore be sandboxed and sanitized carefully. Layer 3 (L3) contains a
number of services delivered by the hypervisor to VMs in the form
of hypercalls, such as exposing or modifying the state of a given
hRSC (e.g, a vNIC security configuration).
Interfaces. Each hRSC communicates with adjacent layers through
3 interfaces. The L1 interface is used for instance to handle hard-
ware interrupts. The L2 interface allows the hRSC to interact with
other hRSCs through an abstract Communication Bus capturing in-
ternal hypervisor (e.g., IPCs such as signals, shared memory, or
sockets) or vSwitch-level communications. Finally, the L3 inter-
face connects the hRSC with VM resources through specific stubs
in the hypervisor.

2.2 Protection Framework

Figure 2: KungFuVisor Self-Protection Architecture.

Multiple Loops. Hypervisor self-defense is achieved through a set
of autonomic loops operating over a number of components orga-
nized into 3 planes (see Figure 2). At the bottom, a resource plane
contains the hRSCs to protect. Over it, a management plane con-
taining a set of agents is defined for performing detection/reaction
over hRSCs. At the top, an orchestration plane coordinates decision-
making between self-protection loops.
Monitoring and Reaction. Agents are wrappers around hRSCs
which mediate communications over specific hRSC interfaces via
the framework hooks, to monitor activity (e.g., detect malicious
invocations), or to perform reactions (e.g., forbid access to an in-
terface). The framework is agnostic with respect to detection and
reaction components: such dedicated compoents can be plugged-in
to mitigate specific attacks. For instance, any type of lightweight
IDS (signature-, anomaly-, or classifier-based) monitoring the Lx

interface functions and parameters may be used for detection. Simi-
larly, mechanisms for firewalling outgoing Lx calls, or cleansing
the driver by internal state modification are applicable for reaction.

Decision-Making. The self-protection decision logic is split bet-
ween two types of orchestrators. Each hypervisor layer Lx con-
tains a Horizontal Orchestrator (HO) providing a layer-view of se-
curity management. The HO is a simple autonomic security ma-
nager performing a reflex, local response to threats targetted at a
specific set of hRSCs incoming and propagating through the Lx

layer interface. The HO supervises agents attached to the Lx inter-
face of monitored hRSCs, aggregating collected information, and
dispatching chosen reactions.
A Vertical Orchestrator (VO) realizes higher-level, wider spectrum
security reactions. By evaluating information provided by HOs in
each layer, the VO coordinates layer-level decisions in order to pro-
vide a consistent, cross-layer response to detected threats.
Orchestrator interplay results in a very flexible self-protection model
allowing to enforce a rich continuum of remediation strategies, both
within and across layers, and between computing and networking
views of resources. For instance, a L3-level reaction over a net-
working hRSC (e.g., disable a vNIC) may be triggered by L1-level
detection of anomalous behavior on a computing hRSC (e.g., phy-
sical memory tampering).
Implementation.The protection framework is easily mapped to the
hypervisor model by setting all entities of management and orches-
tration planes directly into the hypervisor. Specific hooks then con-
nect agents to the relevant hRSC interfaces. This design limits
the attack surface, as all framework entities are in the hypervisor
itself, without interfaces presented to the outside (i.e., no back-
doors). Moreover, it reduces the impact on legacy hypervisor code,
as agents have the same external interfaces as hRSCs. The perfor-
mance overhead is also expected to be minimal, as the framework
code is interfaced to hRSCs using simple function calls.

3. ONGOING WORK
A first version of the KungFuVisor protection framework has been
specified and implemented to protect the KVM hypervisor. The
framework-to-hypervisor mapping is currently under implementa-
tion. We now focus on adding framework components into the
qemu-kvm part of KVM which contains the majority of device
drivers.
In the future, we plan to introduce KungFuVisor components in the
KVM kvm.ko kernel module, which also contains drivers which
could lead to ring-0 exploitation. We also intend to explore how
to use the hardware layer to make the framework components tam-
perproof. Future work includes offloading some framework com-
ponents such as the orchestrators into one or more admnistrative
VMs [9]. This option should improve modularity and simplify se-
curity policy administration by reducing dependence on hypervisor
code. The VMM size should besides be smaller. However, it may
weaken security and induce performance penalties. Finding the
right balance is thus the next big challenge.

4. REFERENCES
[1] A. Azab et al. HyperSentry: Enabling Stealthy In-Context Measurement of

Hypervisor Integrity. In CCS, 2010.
[2] T. Ball et al. Thorough Static Analysis of Device Drivers. In EUROSYS, 2006.
[3] P. Colp et al. Breaking Up is Hard to Do: Security and Functionality in a

Commodity Hypervisor. In SOSP, 2011.
[4] N. Elhage. Virtunoid: Breaking out of KVM. In DEFCON, 2011.
[5] V. Ganapathy et al. The Design and Implementation of Microdrivers. In

ASPLOS, 2008.
[6] K. Kortchinsky. CloudBurst: A VMware Guest to Host Escape Story. In

BLACKHAT, 2009.
[7] U. Steinberg and B. Kauer. NOVA: A Microhypervisor-Based Secure

Virtualization Architecture. In EUROSYS, 2010.
[8] L. Tan et al. iKernel: Isolating Buggy and Malicious Device Drivers Using

Hardware Virtualization Support. In DASC, 2007.
[9] A. Wailly, M. Lacoste, and H. Debar. Towards Multi-Layer Autonomic Isolation

of Cloud Computing and Networking Resources. In Workshop on Crytography
and Security in Clouds (CSC), 2011.


